Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1422: 279-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36988885

RESUMEN

Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.


Asunto(s)
Canales de Cloruro , Fosfatidilinositoles , Humanos , Canales de Cloruro/genética , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Anoctamina-1/metabolismo , Calcio/metabolismo , Colesterol , Canales de Calcio , Células HEK293
2.
Handb Exp Pharmacol ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35768554

RESUMEN

Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.

3.
J Gen Physiol ; 154(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35687042

RESUMEN

Numerous essential physiological processes depend on the TMEM16A-mediated Ca2+-activated chloride fluxes. Extensive structure-function studies have helped to elucidate the Ca2+ gating mechanism of TMEM16A, revealing a Ca2+-sensing element close to the anion pore that alters conduction. However, substrate selection and the substrate-gating relationship in TMEM16A remain less explored. Here, we study the gating-permeant anion relationship on mouse TMEM16A expressed in HEK 293 cells using electrophysiological recordings coupled with site-directed mutagenesis. We show that the apparent Ca2+ sensitivity of TMEM16A increased with highly permeant anions and SCN- mole fractions, likely by stabilizing bound Ca2+. Conversely, mutations at crucial gating elements, including the Ca2+-binding site 1, the transmembrane helix 6 (TM6), and the hydrophobic gate, impaired the anion permeability and selectivity of TMEM16A. Finally, we found that, unlike anion-selective wild-type channels, the voltage dependence of unselective TMEM16A mutant channels was less sensitive to SCN-. Therefore, our work identifies structural determinants of selectivity at the Ca2+ site, TM6, and hydrophobic gate and reveals a reciprocal regulation of gating and selectivity. We suggest that this regulation is essential to set ionic selectivity and the Ca2+ and voltage sensitivities in TMEM16A.


Asunto(s)
Calcio , Canales de Cloruro , Animales , Aniones/metabolismo , Anoctamina-1/genética , Calcio/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Células HEK293 , Humanos , Activación del Canal Iónico , Ratones , Proteínas de Neoplasias/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35202806

RESUMEN

The calcium-activated chloride channel TMEM16A (ANO1) supports the passive movement of chloride ions across membranes and controls critical cell functions. Here we study the block of wild-type and mutant TMEM16A channels expressed in HEK293 cells by oleic acid, a monounsaturated omega-9 fatty acid beneficial for cardiovascular health. We found that oleic acid irreversibly blocks TMEM16A in a dose- and voltage-dependent manner at low intracellular Ca2+. We tested whether oleic acid interacted with the TMEM16A pore, varying the permeant anion concentration and mutating pore residues. Lowering the permeating anion concentration in the intracellular side did nothing but the blockade was intensified by increasing the anion concentration in the extracellular side. However, the blockade of the pore mutants E633A and I641A was voltage-independent, and the I641A IC50, a mutant with the inner hydrophobic gate in disarray, increased 16-fold. Furthermore, the uncharged methyl-oleate blocked 20-24% of the wild-type and I641A channels regardless of voltage. Our findings suggest that oleic acid inhibits TMEM16A by an allosteric mechanism after the electric field drives oleic acid's charged moiety inside the pore. Block of TMEM16A might be why oleic acid has a beneficial impact on the cardiovascular system.


Asunto(s)
Canales de Cloruro , Ácido Oléico , Aniones/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Calcio/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ácido Oléico/farmacología
5.
Adv Physiol Educ ; 45(2): 217-223, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33825523

RESUMEN

It is important for medical students to understand the relationship between nutrition, obesity, and diabetes to educate their patients in the future. However, medical training does not always include nutritional education. An experiential learning project was incorporated into the medical school curriculum as an effort to implement nutrition in the physiology course. First-year medical students (n = 140) received lectures on the regulation of blood glucose levels and their relationship to carbohydrates with different glycemic indexes (GI), obesity, and diabetes. Lectures were followed by a laboratory exercise where students calculated their body mass index (BMI), percentage body fat, and percentage muscle using a Bioelectrical Impedance Commercial Scale. While 63% of students had normal BMI, 31% were overweight or obese and 5% were underweight. A subgroup of 54 students tested different types of breakfasts with varying GI and provided blood samples at 0, 30, 60, 90, and 120 min. Their glucose responses were plotted based on the breakfast GI. Pre- and posttests were conducted to assess the teaching intervention where the Wilcoxon signed ranks test indicated that posttest ranks were significantly higher than pretest ranks (Z = -6.6, P < 0.001), suggesting the intervention was beneficial to students.


Asunto(s)
Diabetes Mellitus , Estudiantes de Medicina , Índice de Masa Corporal , Diabetes Mellitus/diagnóstico , Humanos , Obesidad , Sobrepeso
6.
Cell Calcium ; 89: 102211, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32422433

RESUMEN

Chloride fluxes through the calcium-gated chloride channel Anoctamin-1 (TMEM16A) control blood pressure, secretion of saliva, mucin, insulin, and melatonin, gastrointestinal motility, sperm capacitation and motility, and pain sensation. Calcium activates a myriad of regulatory proteins but how these proteins affect TMEM16A activity is unresolved. Here we show by co-immunoprecipitation that increasing intracellular calcium with ionomycin or by activating sphingosine-1-phosphate receptors, induces coupling of calcium/calmodulin-dependent phosphatase calcineurin and prolyl isomerase FK506-binding protein 12 (FKBP12) to TMEM16A in HEK-293 cells. Application of drugs that target either calcineurin (cyclosporine A) or FKBP12 (tacrolimus known as FK506 and sirolimus known as rapamycin) caused a decrease in TMEM16A activity. In addition, FK506 and BAPTA-AM prevented co-immunoprecipitation between FKBP12 and TMEM16A. FK506 rendered the channel insensitive to cyclosporine A without altering its apparent calcium sensitivity whereas zero intracellular calcium blocked the effect of FK506. Rapamycin decreased TMEM16A activity in cells pre-treated with cyclosporine A or FK506. These results suggest the formation of a TMEM16A-FKBP12-calcineurin complex that regulates channel function. We conclude that upon a cytosolic calcium increase the TMEM16A-FKPB12-calcineurin trimers are assembled. Such hetero-oligomerization enhances TMEM16A channel activity but is not mandatory for activation by calcium.


Asunto(s)
Anoctamina-1/metabolismo , Calcineurina/metabolismo , Calcio/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Ciclosporina/farmacología , Células HEK293 , Humanos , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Sirolimus/farmacología , Tacrolimus/farmacología
7.
Sci Rep ; 10(1): 6644, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313203

RESUMEN

Anoctamin-1 (ANO1 or TMEM16A) is a homo-dimeric Ca2+-activated Cl- channel responsible for essential physiological processes. Each monomer harbours a pore and a Ca2+-binding pocket; the voltage-dependent binding of two intracellular Ca2+ ions to the pocket gates the pore. However, in the absence of intracellular Ca2+ voltage activates TMEM16A by an unknown mechanism. Here we show voltage-activated anion currents that are outwardly rectifying, time-independent with fast or absent tail currents that are inhibited by tannic and anthracene-9-carboxylic acids. Since intracellular protons compete with Ca2+ for binding sites in the pocket, we hypothesized that voltage-dependent titration of these sites would induce gating. Indeed intracellular acidification enabled activation of TMEM16A by voltage-dependent protonation, which enhanced the open probability of the channel. Mutating Glu/Asp residues in the Ca2+-binding pocket to glutamine (to resemble a permanent protonated Glu) yielded channels that were easier to activate at physiological pH. Notably, the response of these mutants to intracellular acidification was diminished and became voltage-independent. Thus, voltage-dependent protonation of glutamate/aspartate residues (Glu/Asp) located in the Ca2+-binding pocket underlines TMEM16A activation in the absence of intracellular Ca2+.


Asunto(s)
Anoctamina-1/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Proteínas Recombinantes de Fusión/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Anoctamina-1/antagonistas & inhibidores , Anoctamina-1/genética , Antracenos/farmacología , Cationes Bivalentes , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Ratones , Mutación , Técnicas de Placa-Clamp , Plásmidos/química , Plásmidos/metabolismo , Protones , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Taninos/farmacología , Transfección
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 299-312, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29277655

RESUMEN

The TMEM16A-mediated Ca2+-activated Cl- current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-ß-cyclodextrin M-ßCD) or restoration (with M-ßCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-ßCD alone transiently increases TMEM16A activity and dampens rundown whereas M-ßCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-ßCD, M-ßCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.


Asunto(s)
Anoctamina-1/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Anoctamina-1/genética , Calcio/metabolismo , Membrana Celular/genética , Colesterol/genética , Ácidos Grasos/genética , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Fosfatidilinositol 4,5-Difosfato/genética
9.
J Physiol ; 595(5): 1515-1531, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859335

RESUMEN

KEY POINTS: The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT: Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5  m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0  m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5  m, but 10-9.0  m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .


Asunto(s)
Canales de Cloruro/fisiología , Anoctamina-1 , Calcio/fisiología , Canales de Cloruro/genética , Células HEK293 , Humanos , Modelos Moleculares , Protones
10.
Biochem Biophys Res Commun ; 481(1-2): 19-24, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27833023

RESUMEN

We studied the effects of extracellular ATP and Ca2+ on uptake of bacteria (Staphylococcus aureus or Escherichia coli) and live yeast (Candida glabrata) by J774 macrophages to determine the role of endogenous P2X7 receptors in phagocytosis. Our findings show that phagocytosis of bio-particles coated with S. aureus or E. coli was blocked by ATP and the P2X7 receptor agonist BzATP, while yeast phagocytosis was not. A438079, an antagonist of P2X7 receptors, partially reverted the effects of ATP on bacterial phagocytosis. To determine if P2X7-mediated Ca2+ entry into macrophages was blocking the engulfment of bacteria, we measured phagocytic activity in the absence or presence of 2 mM extracellular Ca2+ with or without ATP. Ca2+, in the absence of ATP, was required for engulfment of E. coli and C. glabrata but not S. aureus. Adding ATP inhibited phagocytosis of S. aureus and E. coli regardless of Ca2+, suggesting that Ca2+ entry was not important for inhibiting phagocytosis. On the other hand, phagocytosis of normal or hyper-adherent C. glabrata mutants had an absolute requirement for extracellular Ca2+ due to yeast adhesion to macrophages mediated by Ca2+-dependent adhesion proteins. We conclude that unstimulated P2X7 from J774 cells act as scavenger receptor for the uptake of S. aureus and E. coli but not of yeast; Ca2+ entry via P2X7 receptors play no role in phagocytosis of S. aureus and E. coli; while the effect of Ca2+ on C. glabrata phagocytosis was mediated by the adhesins Epa1, Epa6 and Epa7.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Señalización del Calcio/fisiología , Candida glabrata/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Receptores Purinérgicos P2X7/metabolismo , Adhesinas Bacterianas/metabolismo , Animales , Línea Celular , Células Cultivadas , Ratones , Fagocitosis , Receptores Depuradores/metabolismo
11.
Pflugers Arch ; 468(7): 1241-1257, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138167

RESUMEN

TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. (a) TMEM16A is activated by voltage in the absence of intracellular Ca(2+). (b) The Cl(-) conductance is decreased after reducing extracellular Cl(-) concentration ([Cl(-)]o). (c) ICl is regulated by physiological concentrations of [Cl(-)]o. (d) In cells dialyzed with 0.2 µM [Ca(2+)]i, Cl(-) has a bimodal effect: at [Cl(-)]o <30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM, [Cl(-)]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca(2+) and Cl(-) to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca(2+) ions coupled to a Vm-dependent binding of an external Cl(-) ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl(-) does not alter the apparent Ca(2+) affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl(-) acts by stabilizing the open configuration induced by Ca(2+) and by contributing to the Vm dependence of activation.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Aniones/metabolismo , Anoctamina-1 , Calcio/metabolismo , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Cinética , Ratones , Contracción Muscular/fisiología , Miocitos del Músculo Liso/metabolismo
13.
Biochem Biophys Res Commun ; 467(3): 484-90, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26456657

RESUMEN

The ATP-gated P2X4 and P2X7 receptors are cation channels, co-expressed in excitable and non-excitable cells and play important roles in pain, bone development, cytokine release and cell death. Although these receptors interact the interacting domains are unknown and the functional consequences of this interaction remain unclear. Here we show by co-immunoprecipitation that P2X4 interacts with the C-terminus of P2X7 and by fluorescence resonance energy transfer experiments that this receptor-receptor interaction is driven by ATP. Furthermore, disrupting the ATP-driven interaction by knocking-out P2X4R provoked an attenuation of P2X7-induced cell death, dye uptake and IL-1ß release in macrophages. Thus, P2X7 interacts with P2X4 via its C-terminus and disrupting the P2X7/P2X4 interaction hinders physiological responses in immune cells.


Asunto(s)
Macrófagos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
J Physiol ; 593(24): 5283-98, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26728431

RESUMEN

KEY POINTS: Calcium-activated chloride channels TMEM16A and TMEM16B support important physiological processes such as fast block of polyspermy, fluid secretion, control of blood pressure and sensory transduction. Given the physiological importance of TMEM16 channels, it is important to study how incoming stimuli activate these channels. Here we study how channels open and close and how the process of gating is regulated. We show that TMEM16A and TMEM16B display fast and slow gating. These gating modes are regulated by voltage and external chloride. Dual gating explains the complex time course of the anion current. Residues within the first intracellular loop of the channel influence the slow gating mode. Dual gating is an intrinsic property observed in endogenous calcium-activated chloride channels and could be relevant to physiological processes that require sustained chloride ion movement. ABSTRACT: TMEM16A and TMEM16B are molecular components of the physiologically relevant calcium-activated chloride channels (CaCCs) present in many tissues. Their gating is dictated by membrane voltage (Vm ), intracellular calcium concentrations ([Ca(2+) ]i ) and external permeant anions. As a consequence, the chloride current (ICl ) kinetics is complex. For example, TMEM16A ICl activates slowly with a non-mono-exponential time course while TMEM16B ICl activates rapidly following a mono-exponential behaviour. To understand the underlying mechanism responsible for the complex activation kinetics, we recorded ICl from HEK-293 cells transiently transfected with either TMEM16A or TMEM16B as well as from mouse parotid acinar cells. Two distinct Vm -dependent gating modes were uncovered: a fast-mode on the millisecond time scale followed by a slow mode on the second time scale. Using long (20 s) depolarizing pulses both gating modes were activated, and a slowly rising ICl was recorded in whole-cell and inside-out patches. The amplitude of ICl at the end of the long pulse nearly doubled and was blocked by 100 µm tannic acid. The slow gating mode was strongly reduced by decreasing the [Cl(-) ]o from 140 to 30 mm and by altering the sequence of the first intracellular loop. Mutating 480 RSQ482 to AVK in the first intracellular loop of TMEM16B nearly abolished slow gating, but, mutating 448 AVK451 to RSQ in TMEM16A has little effect. Deleting 448 EAVK451 residues in TMEM16A reduced slow gating. We conclude that TMEM16 CaCCs have intrinsic Vm - and Cl(-) -sensitive dual gating that elicits complex ICl kinetics.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico , Células Acinares/metabolismo , Células Acinares/fisiología , Potenciales de Acción , Secuencias de Aminoácidos , Animales , Anoctamina-1 , Anoctaminas , Células Cultivadas , Canales de Cloruro/química , Canales de Cloruro/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación
15.
Biochim Biophys Acta ; 1830(10): 4650-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23711511

RESUMEN

BACKGROUND: Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS: J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS: ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS: Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE: ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptores Purinérgicos P2X7/fisiología , Animales , Calcio/metabolismo , Línea Celular , Humanos , Transporte Iónico , Macrófagos/enzimología , Ratones
16.
Proc Natl Acad Sci U S A ; 109(26): 10376-81, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22685202

RESUMEN

The newly discovered Ca(2+)-activated Cl(-) channel (CaCC), Anoctamin 1 (Ano1 or TMEM16A), has been implicated in vital physiological functions including epithelial fluid secretion, gut motility, and smooth muscle tone. Overexpression of Ano1 in HEK cells or Xenopus oocytes is sufficient to generate Ca(2+)-activated Cl(-) currents, but the details of channel composition and the regulatory factors that control channel biology are incompletely understood. We used a highly sensitive quantitative SILAC proteomics approach to obtain insights into stoichiometric protein networks associated with the Ano1 channel. These studies provide a comprehensive footprint of putative Ano1 regulatory networks. We find that Ano1 associates with the signaling/scaffolding proteins ezrin, radixin, moesin, and RhoA, which link the plasma membrane to the cytoskeleton with very high stoichiometry. Ano1, ezrin, and moesin/radixin colocalize apically in salivary gland epithelial cells, and overexpression of moesin and Ano1 in HEK cells alters the subcellular localization of both proteins. Moreover, interfering RNA for moesin modifies Ano1 current without affecting its surface expression level. Another network associated with Ano1 includes the SNARE and SM proteins VAMP3, syntaxins 2 and -4, and syntaxin-binding proteins munc18b and munc18c, which are integral to translocation of vesicles to the plasma membrane. A number of other regulatory proteins, including GTPases, Ca(2+)-binding proteins, kinases, and lipid-interacting proteins are enriched in the Ano1 complex. These data provide stoichiometrically prioritized information about mechanisms regulating Ano1 function and trafficking to polarized domains of the plasma membrane.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Anoctamina-1 , Línea Celular , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Humanos , Xenopus
17.
Cell Logist ; 2(4): 189-196, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23676845

RESUMEN

There are numerous experimental approaches to identify the interaction networks of soluble proteins, but strategies for the identification of membrane protein interactomes remain limited. We discuss in detail the logic of an experimental design that led us to identify the interactome of a membrane protein of complex membrane topology, the calcium activated chloride channel Anoctamin 1/Tmem16a (Ano1). We used covalent chemical stabilizers of protein-protein interactions combined with magnetic bead immuno-affinity chromatography, quantitative SILAC mass-spectrometry and in silico network construction. This strategy led us to define a putative Ano1 interactome from which we selected key components for functional testing. We propose a combination of procedures to narrow down candidate proteins interacting with a membrane protein of interest for further functional studies.

18.
Proc Natl Acad Sci U S A ; 108(21): 8891-6, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555582

RESUMEN

Ca(2+)-activated Cl(-) channels (CaCCs) are exceptionally well adapted to subserve diverse physiological roles, from epithelial fluid transport to sensory transduction, because their gating is cooperatively controlled by the interplay between ionotropic and metabotropic signals. A molecular understanding of the dual regulation of CaCCs by voltage and Ca(2+) has recently become possible with the discovery that Ano1 (TMEM16a) is an essential subunit of CaCCs. Ano1 can be gated by Ca(2+) or by voltage in the absence of Ca(2+), but Ca(2+)- and voltage-dependent gating are very closely coupled. Here we identify a region in the first intracellular loop that is crucial for both Ca(2+) and voltage sensing. Deleting (448)EAVK in the first intracellular loop dramatically decreases apparent Ca(2+) affinity. In contrast, mutating the adjacent amino acids (444)EEEE abolishes intrinsic voltage dependence without altering the apparent Ca(2+)affinity. Voltage-dependent gating of Ano1 measured in the presence of intracellular Ca(2+) was facilitated by anions with high permeability or by an increase in [Cl(-)](e). Our data show that the transition between closed and open states is governed by Ca(2+) in a voltage-dependent manner and suggest that anions allosterically modulate Ca(2+)-binding affinity. This mechanism provides a unified explanation of CaCC channel gating by voltage and ligand that has long been enigmatic.


Asunto(s)
Calcio/fisiología , Canales de Cloruro/fisiología , Activación del Canal Iónico/fisiología , Canales Aniónicos Dependientes del Voltaje/fisiología , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Aniones , Anoctamina-1 , Sitios de Unión , Canales de Cloruro/química , Humanos , Ratones , Eliminación de Secuencia
19.
Purinergic Signal ; 6(3): 297-306, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21103213

RESUMEN

It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X(7) receptors (P2X(7)R) to elicit Ca(2+) entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X(7)R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X(7)R activation to downstream effectors, immune-labelling of P2X(7)R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X(7)R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X(7)R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells-a model cell for human neutrophils. We concluded that P2X(7)R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.

20.
Channels (Austin) ; 4(5): 422-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20935453

RESUMEN

In silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously.


Asunto(s)
Simulación por Computador , Canales Iónicos/metabolismo , Modelos Moleculares , Programas Informáticos , Activación del Canal Iónico , Cinética , Canales Iónicos Activados por Ligandos/metabolismo , Cadenas de Markov , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...